ALGEBRAIC NUMBER THEORY - MIDSEMESTRAL TEST

17TH FEB, 2017, 10:00AM - 1:00PM

Instructions:

- (i) This exam is an open sheet exam you can keep one A4 sized sheet with you as a cheat sheet (with anything written on it) for your reference.
- (ii) The questions in section 1 are to be answered in True/False, no explanation need be given. All questions are compulsory. Each question carries 1 point.
- (iii) In section 2 and section 3, answer any two questions out of the three. Each question carries 5 points.

1.

- **Q** 1. Answer in True/False, no explanation needed. Each question carries 1 point.
 - (1) Let $S \subset R$ be a multiplicative set (that is $s_1, s_2 \in S \Rightarrow s_1 s_2 \in S$). Then the ideals of $S^{-1}R$ are in bijective correspondece with ideals of R which do not have an intersection with S.
 - (2) Let L be a subfield of \mathbb{C} which is algebraic, finite dimensional over \mathbb{Q} . Then for any $x \in L$, the norm $N_{L/\mathbb{Q}}(x) = |x|$ where $|\cdot|$ denotes the usual norm in \mathbb{C} .
 - (3) Let L/\mathbb{Q} be a number field of degree n. Then there are n distinct embeddings $\sigma: L \hookrightarrow \mathbb{C}$.
 - (4) Discriminant of a number field L/\mathbb{Q} is always positive.
 - (5) Let $(K, |\cdot|)$ be a valued field and V/K be a finite dimensional vector space with basis $a_1, a_2, ..., a_r$. Let $\|\cdot\|$ be a K-norm on V (that is a norm on V such that $\|\lambda v\| = |\lambda| \|v\| \forall \lambda \in K, \forall v \in V$). Let $v_n = \lambda_n^{(1)} a_1 + ... + \lambda_n^{(r)} a_r$ be such that $\|v_n\| \to 0$ as $n \to \infty$. Then $|\lambda_n^{(i)}| \to 0$ as $n \to \infty$, for all *i*.

2.

Answer any two questions from Q 2 - Q 4. Each question carries 5 points.

Q 2. Show that:

- (1) Let R be a Dedekind domain and $I \subset R$ be a nonzero ideal. If $0 \neq a \in I$, then there is some $b \in I$ such that I = (a, b).
- (2) Let K be a number field, R it's ring of integers and $p \in \mathbb{Z}$ be a prime. Assume that $pR = \mathfrak{q}_1^{e_1} \dots \mathfrak{q}_r^{e_r}$ where $\mathfrak{q}_1, \dots, \mathfrak{q}_r$ are prime ideals of R. Then for a prime ideal $\mathfrak{q} \subset R$,

$$\mathfrak{q} \cap \mathbb{Z} = (p) \Leftrightarrow \mathfrak{q} \in \{\mathfrak{q}_1, ..., \mathfrak{q}_r\}.$$

- **Q** 3. Show that discriminant of a number field L is 0 or 1 (mod 4).
- **Q** 4. Find all integer solutions X, Y satisfying $X^2 7Y^2 = 1$.

Answer any two questions from Q 5 - Q 7. Each question carries 5 points.

Q 5. Compute the class group of $K = \mathbb{Q}[\sqrt{-14}]$ as follows:

- (1) Use Minkowski bound to show that primes **p** that lie over (2) and (3) generate the class group.
- (2) Show that the ring of integers in K is $\mathbb{Z}[\sqrt{-14}]$ and show that

(2) =
$$\mathfrak{p}_2^2$$
 and (3) = $\mathfrak{p}_3\mathfrak{p}_3'$

with $\mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}'_3$ not principal.

(3) Compute the class group of K by computing the factorization of the principal ideal $(2 + \sqrt{-14})$.

Hint: $N_{K/\mathbb{Q}}(2+\sqrt{-14})=2\cdot 3^2$ and show that $(3)=\mathfrak{p}_3\mathfrak{p}_3' \nmid (2+\sqrt{-14}).$

Remark (Minkowski Bound). For any fractional ideal $I \subset K$, there is an integral ideal $J \in [I]$ (where [I] denotes the class of I in the class group) such that:

$$N_{K/\mathbb{Q}}(J) \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|\Delta(K/\mathbb{Q})|}$$

where n is the degree of K/\mathbb{Q} , there are 2s complex embeddings of K in \mathbb{C} , and $\Delta(K/\mathbb{Q})$ is the discriminant of K.

Q 6. Let L/K be a finite extension of degree *n* where *K* is complete with respect to a non-Archimedean discrete valuation $|\cdot|$. Then:

- (1) Show that there exists a unique extension of $|\cdot|$ to a valuation on L.
- (2) This extension is given by

$$|y| := |N_{L/K}(y)|^{1/n}$$
 for any $y \in L$.

Q 7. Show that there is a unique function $\log : \mathbb{Q}_p^{\times} \to \mathbb{Q}_p$ characterized by the following properties:

- (1) $\log(xy) = \log(x) + \log(y)$ for all $x, y \in \mathbb{Q}_p^{\times}$.
- (2) $\log(p) = 0.$
- (3) $\log(1-x) = -x \frac{x^2}{2} \frac{x^3}{3} \dots$ whenever the right hand side converges.

Remark. You can assume the following (well known) relation in the ring of formal power series $\mathbb{Q}[[X, Y]]$

$$\log(1 - X) + \log(1 - Y) = \log(1 - (X + Y - XY))$$

where the logarithm is defined by:

$$\log(1 - P(X, Y)) := -P(X, Y) - \frac{P(X, Y)^2}{2} - \frac{P(X, Y)^3}{3} - \dots$$

for any P(X,Y) lying in the ideal generated by $\{X,Y\}$.

Remark. \mathbb{Q}_p is the completion of \mathbb{Q} for the p-adic exponential valuation $(v_p(\cdot) \text{ with } v_p(p) = 1)$.